Technology

Mike Wyllie | Andrew Newport

Group Technology Director SBM Monaco PTD Director

September 19, 2014

OFFSHORE

Disclaimer

Some of the statements contained in this presentation that are not historical facts are statements of future expectations and other forward-looking statements based on management's current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance, or events to differ materially from those in such statements. Such forward-looking statements are subject to various risks and uncertainties, which may cause actual results and performance of the Company's business to differ materially and adversely from the forward-looking statements.

Should one or more of these risks or uncertainties materialize, or should underlying assumptions prove incorrect, actual results may vary materially from those described in this presentation as anticipated, believed, or expected. SBM Offshore NV does not intend, and does not assume any obligation, to update any industry information or forward-looking statements set forth in this presentation to reflect subsequent events or circumstances.

Contents

- 1. Key Industry Trends
- 2. Technology Organisation in SBM
- 3. Technology Advances
 - FPSO Technology
 - Mooring System Technology (A. Newport)
 - Semi Sub & TLP Technology (A. Newport)
 - FLNG Technology
 - Other Technology
- 4. SBM Group Technical Standards
- 5. Conclusions

Industry Trends

OFFSHORE

What We Are Hearing From Our Clients as Key Trends in the Industry

Technology Development in SBM Offshore

Four Technology Leadership Centres

Technology Readiness Level (TRL)

Status	TRL	
Proven in service for >3 years	7	
System installed and operating.	6	Technology
Execution of full scale project	5	developed in SBM
System prototype / FEED	4	through a stage-
Component prototype / pre-FEED	3	gate process to
Concept validation by testing	2	ensure robustness prior to first sale.
Concept proving by theory		
Idea definition	0	

FPSO Technology

Generation 1 Simple Oil Processing FPSOs

FPSO IV 1986 to 1998

FPSO II 1981 to 1996

OFFSHORE

Generation 1 Rang Dong & Pre-1998 FPSOs

Generation 2 FPSO *Brasil* and *Marlim Sul*

Marlim Sul

FPSO Brasil

Generation 2 FPSO *Brasil & Marlim Sul*

Generation 3 *Cidade de Paraty* and Beyond...

OFFSHORE

Generation 3 Cidade de Paraty and Beyond

Generation 3 FPSO's Measure of Complexity

Cidade de Ilhabela – Sailaway

Subject

Process Intensification (PI)

Compact topsides technologies

Greater capacity Cost reduction Improved & Inherent Safety Improved Performance

New Technology with PI Ultrafiltration of Seawater

Note: Pictures to approx. same scale

C.de Ilhabela sea water treatment: MMF → vac DA → SRP 180,000 bwpd

Standardised, scalable SW treatment: UF → SRP → vac DA 270,000 bwpd

New Ways of Working Offshore

Offshore

Mooring Technology

Andrew Newport

Turret Moored FPSO

Spread Moored FPSO

Past Mooring Systems

Current Range of Internal Turrets

Water Depth Trend For FPSO and FSO Moorings

Year

Top Mounted Internal Turret (TMIT)

Virtually no limit on riser number – scalable

Virtually no limit on mooring loads

Bogies and radial wheels are inspectable and replaceable

Top Mounted Internal Turret (TMIT)

Bogies support axial loads

Radial wheels support radial loads

Dry access in turret for inspection and maintenance

The bogie design is standard

The number of bogies is selected to accommodate the design loads (N+1)

TMIT with Steel Risers

Espirito Santo employs steel lazy wave risers

Steel Lazy Wave Risers terminate at lower cylinder deck

Umbilicals terminate at upper cylinder deck

Weathervaning system unaffected

FPSO Turritella

Disconnectable Mooring Systems

Able to disconnect under loads (600 tons per locking device)

Able to transfer up to 900 tons per locking device when connected

MoorSparTM

A slender buoy (spar) decoupled from the FPSO heave motions

Capable of supporting much larger number of steel risers

SBI

Disconnectable for hurricane events

MoorSpar™

Arctic Moorings

- 100 yr return condition
- Disconnect under low loads

fields

00

- Ice vaning
- Disconnect under high loads

Ice Class FPSOs

Key Mooring Challenges

Sheet ice – "Ice Vaning" required Mooring system disconnectable under ice loads

OFFSHORE

Ice Vaning Tests in Arctic Model Test Basin

Ice model test campaign in Arctic conditions

Articulated Rod Connecting Arm (ARCA)

- Improved Maintenance
- Diverless Safer
- Cost Reduction

ARAC Prototype

Swivel Overview

FPSO ESPIRITO

Swivels transfer fluids, utilities, power and signals between the geostationary turret and the weathervaning vessel.

Growing in Size of Swivel Stacks

Very High Pressure Swivels Introduced in 2014

Core Swivel Technology

Large Scale Power Import or Export

HVAC swivel rated at 65 kV and 150 MW

Mooring Systems – Summary

Deeper	 VPH Swivels for deeper reservoirs 		
Harsher	 Increased mooring loads using bogie bearings 		
Colder	 Disconnectable turrets for Arctic 		
Larger	 Higher capacity swivels, optimised manifolds 		
Lower Cost	 ARCA, higher capacity external turrets 		

Semi Sub & TLP Technology

Proven Deepwater Semi-Submersibles and Tension Leg Platforms

Beyond ~1500m water depth

DeepDraft Semi Submersible

- 2 Units installed in US GoM
- Operating in 2450m water depth
- Optimised for wet trees and steel risers
- Also available for dry trees in moderate Hs

Below ~1500m water depth

Tension Leg Platform (TLP)

- 5 SeaStar units installed, marginal field solution ٠
- FourStar TLP design for larger fields
- Both available for dry or wet trees

Production units in areas of developed infrastructure do not need storage

FourStar[™]TLP

Builds on SeaStar experience

Higher payload than SeaStar

Suitable for Wet or Dry Trees

Topsides integrated at Quayside

Drilling Riser TRIP-SAVERTM

Allows all wells to be drilled consecutively without recovering and redeploying the Drilling Riser

Significant Drillex saving

Horizontal Tendon Assembly

Horizontal Tendon Assembly

SBM Deep Draft Semi[™] with Dry Trees

Builds on production semi experience

Lower cost and more flexible than a Spar

Quayside topsides integration

Beyond 1500 m, more cost effective than a TLP

FLNG Technology

Conversion or New Build? Analogy with FPSO

Tanker Conversions Dominate the Global FPSO Fleet

- 2/3 of global FPSO fleet are based on tanker conversions
- Conversions dominate in small to mid-scale FPSO oil capacity

Analogy to FPSO Market

New Build FPSO 150,000+ bpd

New Build FLNG 2+ mtpa

Converted FPSO <150,000 bpd

Converted FLNG <2 mtpa

FLNG vessels based on LNG tanker conversions can replicate the success of converted FPSOs, drawing on experience from the global FPSO fleet

Mid Scale Floating LNG

FLNG Twin Hull Concept

Topsides Process Selection

NPV = fn (Capex, Opex, Efficiency, Uptime, Risk)

Comparison of Liquefaction Process Options

	Dual Mixed Refrigerant	Single Mixed Refrigerant	Dual Nitrogen Expansion
Proven technology	Yes	Yes	Yes
Overall space required	High	High/Moderate	Moderate
Hazardous Refrigerant	Yes	Yes	No
HC Refrigerant make-up	Yes	Yes	No
Explosion Hazards	High	High	Low
Complexity of operation	High	Moderate	Low
Process Efficiency	High	Moderate	Moderate
Expected Availability	Moderate	Moderate	High
Total Capital Cost	High	High/Moderate	Moderate
Operating Cost	High	High	Moderate

1/60 Scale Model Test in MARIN Basin

Comparison Between Converted FPSO and Converted FLNG

Similar Topsides weight Similar Capex Similar Schedule

> **FPSO** 150,000 bpd

Twin Hull FLNG 2.0 MTPA

Competitive Advantage Through Technology – Twin Hull FLNG

Lower CAPEX

Excellent Performance

Other Technology

Extended Well Test with GTL

30,000 bpd + 40 MMscfd 🗆 33,000 bpd blended crude

Heavy Oil Upgrading

FPUSO Main Components

50,000 bpd of 9° API ightarrow 45,000 bpd 20° API

S3 Wave Energy Converter (WEC)

Electro Active Polymer (artificial muscle) converts mechanical energy into electrical energy

No mechanical moving parts, Excellent Efficiency

SBM Offshore Group Technical Standards

Continuous Feedback Loop

Technical Lessons Learnt

	CLIENT:		
	SBM OPERATIONS		
	PROJECT:		
OFFSHORE	GROUP TECHNICAL STANDARDS		
	ES45000	PECEMETS999005	A 3
DOCUMENT TITLE:			
MECHANICAL			
UNFIRED PRESSURE VESSEL			
STANDARD SPECIFICATION			

Technical Lessons Learnt

SBM Technology – Conclusions

Strong Technical Partners

> Major Cost & Schedule reduction initiative

Aligned to needs of clients and Industry Trends

Stage Gate process for TRL

